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Abstract

Traditional Video Object Detection typically involves detect-
ing and classifying objects within a video from a closed set
of predefined categories, which limits its ability to general-
ize to new, unseen categories that may appear in real-world
video data. To address this limitation, we make three key
contributions. First, we introduce the novel task of Open-
Vocabulary Video Object Detection, which aims to detect ob-
jects in videos from open-set categories, including those that
were never seen during training. Second, drawing inspiration
from the fields of open-vocabulary multi-object tracking and
open-vocabulary video instance segmentation, we establish a
training and evaluation framework for open-vocabulary video
object detection models, which can serve as a reference for
future work. Third, to fully leverage the temporal information
in videos, we introduce pixel-level and instance-level tempo-
ral attention mechanisms into existing open-vocabulary ob-
ject detection methods. We propose a baseline model, OV-
VOD, which aggregates pixel-level and instance-level fea-
tures from adjacent frames into key frames, aiming to ef-
fectively enhance detection performance. Although our ex-
tensive experiments on the LV-VIS dataset have not yet vali-
dated the effectiveness of our approach, we remain confident
that aggregating features from adjacent frames is a promising
direction for improving performance. This has been demon-
strated by numerous experiments in the traditional video ob-
ject detection field. We will continue exploring this direction
until a suitable method for enhancing detection performance
is found.

Introduction
Although traditional video object detection methods have
been well-developed, they are fundamentally limited by the
need to detect and classify objects from a closed set of train-
ing categories, which restricts the ability of these methods
to generalize to new concepts. In real-world scenarios, this
closed-set vocabulary paradigm has limited practical value,
as new categories frequently emerge in actual applications.
This is one of the key reasons why traditional video ob-
ject detection methods struggle to be effectively applied in
practice. In contrast, recent open-vocabulary object detec-
tion methods aim to detect and classify all objects within
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(a) Traditional Video Object Detection

(b) Open-Vocabulary Video Object Detection

Figure 1: (a) Traditional VOD fails to detect objects from
novel categories(unseen during training, e.g. walnut and to-
bacco pipe in the figure);(b) Open-Vocabulary VOD aims
to detect and classify both training categories (e.g., cup and
person in the figure) and novel categories (e.g., walnut and
tobacco pipe in the figure). Different colors in the figure rep-
resent different object instances.

an image. However, these methods have been primarily ap-
plied to static images. When applied to videos, such static
detection approaches fail to leverage the rich temporal in-
formation inherent in video data. Moreover, video-specific
challenges, such as object occlusion, unusual poses, and mo-
tion blur, are typically absent in images, making it difficult
to directly transfer open-vocabulary object detection meth-
ods from image-based tasks to videos without sacrificing
performance. To address this gap, we introduce the task of
Open-Vocabulary Video Object Detection, which aims to de-
tect and classify any object within an open set of categories
across video frames,as illustrated in Fig.1.

Accurate benchmarking of open-vocabulary video object
detection methods requires a video dataset that encompasses
a large and diverse set of object categories. However, ex-
isting datasets in the video object detection domain, such
as ImageNet VID and EPIC-KITCHENS-55(Damen et al.
2018), are insufficient in terms of category diversity, see
Table 1. This limitation hinders the further development of
open-vocabulary approaches in the video domain due to the
lack of suitable datasets tailored to open-vocabulary video
tasks.



Dataset VID EPIC-55 TAO BURST LV-VIS

Videos 4417 272 1488 2914 4828
Instances 1298k 174k 51378 16089 25588
Objects 2005k 326k 168k 600k 544k
Categories 30 351 363 482 1196

Table 1: Comparison of Key Statistics Between the Datasets
Used in This Paper and Traditional Video Object Detection
Datasets.

To address this issue, we draw inspiration from the fields
of open-vocabulary tracking and open-vocabulary video
instance segmentation, transferring open-vocabulary video
datasets from these domains to the detection domain. Since
the labels used for tracking and segmentation tasks can be
readily converted to bounding box annotations required for
detection tasks, this cross-domain adaptation is highly fea-
sible. Specifically, we leverage two open-vocabulary video
instance segmentation datasets, LV-VIS(Wang et al. 2024),
and one open-vocabulary tracking dataset, BURST(Athar
et al. 2023) and TAO(Dave et al. 2020).

In this work, we evaluate open-vocabulary video ob-
ject detection models using the three aforementioned video
datasets. Among them, the LV-VIS dataset is particularly
well-suited for assessing the generalization capability of
open-vocabulary video object detection methods on novel
categories due to its large number of categories, most
of which are distinct from those annotated in commonly
used datasets such as MS-COCO(Lin et al. 2014) and
LVIS(Gupta, Dollar, and Girshick 2019). As a result, model
performance is primarily benchmarked based on results ob-
tained on the LV-VIS dataset.

One intuitive approach to addressing open-vocabulary
video object detection is to treat each video frame as an in-
dependent image and apply existing open-vocabulary object
detection methods to detect objects frame by frame. How-
ever, this image-based approach neglects the temporal infor-
mation unique to videos and fails to leverage the inter-frame
correlations. Video-specific challenges, such as object oc-
clusion, unusual poses, and motion blur, further exacerbate
the limitations of this naive approach, leading to suboptimal
performance.

In this paper, we aim to propose the first Open-Vocabulary
Video Object Detection model, OV-VOD, which aims to im-
prove the detection performance of target frames by aggre-
gating proposal-level and pixel-level features from support-
ing frames. Specifically, memory attention is utilized to ag-
gregate proposal-level features from supporting frames into
the proposal-level features of the target frame, addressing
challenges such as appearance degradation caused by blur,
occlusion, and abnormal poses in videos.Although the per-
formance of our model has not yet reached a satisfactory
level, we firmly believe that aggregating features from sup-
porting frames is an effective approach for improving video
detection methods. Therefore, we plan to further refine our
aggregation methods in future work while exploring ways to
enhance model performance from the perspective of open-
vocabulary detection.

Related Work
Open-Vocabulary Object Detection has rapidly advanced
with the emergence of various large models. ViLD(Gu et al.
2021) was the first to distill knowledge from Visual Lan-
guage Models (VLMs) into lightweight detectors through a
knowledge distillation approach. ViLD utilizes the princi-
ple of open-vocabulary classification, where visual features
are aligned with extensive textual features during the pre-
training phase of the VLM. It introduces both image and
text branches, distilling the VLM knowledge into the image
branch to facilitate open-vocabulary detection. DetPro(Du
et al. 2022) later extended the work of ViLD by incorporat-
ing specific contextual learning for downstream tasks, result-
ing in improved detection performance. It modifies the static
text prompts in ViLD by adapting them to the task-specific
context, thereby enhancing detection performance.

On the other hand, RegionCLIP(Zhong et al. 2022) learns
visual region representations by aligning image regions with
corresponding region-level textual descriptions. It generates
pseudo-labels for region-text pairs using CLIP(Radford et al.
2021), followed by fine-tuning on manually annotated de-
tection datasets. The GLIP(Li et al. 2022; Zhang et al. 2022)
series unifies object detection and phrase-based grounding
for pre-training. Notably, it leverages a self-training mecha-
nism to generate anchor boxes from a large corpus of image-
text pairs, enabling powerful detection and grounding per-
formance.

Furthermore, Detic(Zhou et al. 2022) adopts a joint train-
ing approach to balance the dataset, as new categories
often suffer from limited sample sizes. By incorporating
image-level supervision, Detic improves long-tail detection
performance.OV-DETR(Zang et al. 2022) employs region-
text alignment, replacing ground truth (GT) bounding boxes
with language as direct supervisory signals. This approach
allows for better alignment of visual and textual features dur-
ing base class training. It replaces the standard binary match-
ing mechanism with a conditional binary matching strategy,
enabling an end-to-end open-vocabulary detection approach.

Recently, BARON(Wu et al. 2023) proposed aligning em-
beddings of different regions into a bag, rather than just
aligning a single region. Specifically, it groups contextu-
ally relevant regions into a ”bag” and treats each region as
a ”word” in a sentence. The bag of regions is then passed
through a text encoder to obtain bag-of-regions embeddings,
which are subsequently aligned with the embeddings of
cropped regions in the VLM’s image encoder.

Although these Open-Vocabulary object detection meth-
ods achieve strong performance on images, their direct ap-
plication to videos is limited by the inability to fully exploit
the temporal information inherent in video data, which may
lead to suboptimal results.

Video Object Detection usually explores rich temporal
information to improve detection performance. According
to the usage of temporal information, off-the-shelf video ob-
ject detection methods can be typically divided into two cat-
egories: pos-processing and feature aggregation methods.

Post-processing methods first obtain bounding boxes
from multiple frames using a detector, then apply linking
or tracking algorithms to associate these boxes into tubelets.



For example, Seq-NMS(Wu et al. 2019a) constructs high-
scoring bounding box sequences from consecutive frames
and leverages them to boost the confidence of weaker detec-
tions. T-CNN(Kang et al. 2018) propagates bounding boxes
across frames using optical flow, and combines tracking al-
gorithms to generate long sequences of tubelets. However,
these post-processing methods heavily rely on the quality of
the detector and fail to fully utilize the temporal information
inherent in videos, resulting in suboptimal performance.

Feature aggregation methods typically enhance the fea-
ture representation of the target frame by aggregating useful
temporal information from multiple support frames. These
methods can be classified into frame-level and proposal-
level aggregation, depending on the stage at which features
are aggregated. Frame-level aggregation methods, such as
FGFA(Zhu et al. 2017), use optical flow networks to guide
the aggregation of features across frames. The DFF(Zhu
et al. 2016) method applies a large-parameter network to
sparse keyframes and propagates deep features to other
frames through the flow field, thereby improving inference
speed. While these methods allow for end-to-end training by
performing early-stage feature aggregation, the performance
gains are often limited.

In contrast, proposal-level aggregation methods aggregate
features at the proposal stage. For example, SELSA(Wu
et al. 2019b) aggregates semantic features from the entire se-
quence rather than just adjacent frames, while MEGA(Chen
et al. 2020) takes into account both global and local tem-
poral information, utilizing a memory mechanism to aggre-
gate features at the proposal level. These methods achieve
better performance by fully leveraging the temporal rela-
tionships between proposal-level features. However, since
they are built upon the base models, their performance is of-
ten constrained by the limitations of the underlying models,
leading to suboptimal results.

Setting of Open-Vocabulary VOD
Task Setting. Given a training dataset Dtrain consisting of
instance-level candidate bounding box annotations for a set
of training categories Ctrain, traditional VOD aims to train a
model fθ(·). This model is designed to be evaluated on a test
dataset Dtest = {Vi}Ni=1, where Vi ∈ RTi×Hi×Wi×3 repre-
sents a video clip of Ti frames with a spatial resolution of
(Hi,Wi).The goal of fθ(·) is to predict the bounding boxes
{bt}Ti

t=1 ∈ R
Ti×Hi×Wi×3 and corresponding class labels

c ∈ Ctrain(Cbase) for all objects in the video that belong to
the base categories. Objects belonging to novel categories
Cnovel are ignored.

In contrast, Open-Vocabulary VOD aims to train a model
on Dtrain and test it on Dtest. Specifically, during infer-
ence, given a test video sequence Vi ∈ R

Ti×Hi×Wi×3,
the trained model is expected to predict all object bound-
ing boxes {bt}Ti

t=1 ∈ RTi×Hi×Wi×3 and the category label
c ∈ (Ctrain ∪ Cnovel) and each object b in Vi:

fθ(Vi) = {{b̂k, ck}Kt

k=1}
Ti
t=1, (1)

Where Kt represents the total number of objects in the t-
th frame, and category ck belongs to the intersection of the

training categories and novel categories. Additionally, b̂k =
{x, y, w, h} denotes the bounding box of the k-th object in
the t-th frame of the i-th video. In the experimental section,
the training categories are referred to as base classes, while
the categories that do not overlap with the base classes are
referred to as novel classes.

Evaluation Metrics.We follow the standard evaluation
setup in MS-COCO and use Average Precision (AP) to as-
sess the performance of both base and novel categories.
Specifically, the Average Precision for i-th category across
all video frames, denoted as APi, is defined as the area
under the precision-recall curve plotted based on the cate-
gory confidence scores. The value of APi is measured at 10
Intersection-over-Union (IoU) thresholds ranging from 0.5
to 0.95, with a step size of 0.05.Finally, the mean Average
Precision is calculated separately for the base category set
and the novel category set, denoted as APb and APn, respec-
tively.

Structure of OV-VOD
After defining the Open-Vocabulary VOD task, this section
introduces our proposed Open-Vocabulary VOD method,
OV-VOD, as illustrated in Fig.2. Overall, our model intro-
duces two key improvements at the video level compared
to existing methods,ViLD. (i)an Instance-Level Memory At-
tention Module, This module employs attention mechanisms
at the instance level to aggregate instance features from
the key frame and supporting frames in memory, thereby
enhancing the proposal-level features of the key frame;
(ii)a Pixel-Level Memory Attention Module, This module
utilizes attention mechanisms at the pixel level to aggre-
gate pixel-level features from the key frame and supporting
frames in memory, improving the pixel-level representation
of the key frame.It is worth noting that the second module is
a conceptual proposal and has not been experimentally val-
idated due to time constraints.We detail the architecture in
the following sections.

Instance-Level Memory Attention
The primary difference between videos and images is that
videos are continuous sequences of images, where the ob-
jects across the frames generally exhibit high temporal con-
sistency. Therefore, an intuitive approach to improving the
performance of Open-Vocabulary object detectors is to fully
exploit the temporal information in videos, similar to tra-
ditional video object detection methods. Specifically, when
detecting on a key frame It, we aggregate a set of support-
ing frames {Is}Ts=1 from the same video.where T denotes
the number of supporting frames used during inference for
the target frame. Inspired by SAM2(Ravi et al. 2024), we
extend the ViLD framework by aggregating instance-level
features.

Let Ft denote the proposal-level features of the target
frame, and {Fs}Ts=1 denote the proposal-level features of
the supporting frames. First, the proposal-level features of
the target frame Ft are passed through a self-attention layer
to obtain spatially enhanced features F ′

t allowing for the ex-
traction of spatial relationships between different proposals



Figure 2: Overview of OV-VOD.∗Indicates a conceptual module that has not yet undergone rigorous experimental validation.

within the same frame. Next, the enhanced features F ′
t of

the target frame and the features of the supporting frames
{Fs}Ts=1 are processed through a cross-attention layer, fol-
lowed by a projection layer, to obtain the aggregated features
F ∗
t .Through the cross-attention mechanism, the proposal-

level features of the key frame can effectively learn temporal
information across different frames, enhancing the proposal-
level features in the target frame by incorporating similar
object representations from different frames.

The attention layers are stacked n times, with n as a hy-
perparameter. By learning through multiple layers of self-
attention and cross-attention, the proposal-level features of
the target frame effectively integrate spatial information
from different instances and temporal information across
different frames, leading to improved final classification per-
formance. The entire process is illustrated in Fig.3

Pixel-Level Memory Attention∗

Due to time constraints, we were unable to conduct a de-
tailed design and experimental analysis of the Pixel-Level
Memory Attention module. However, for the sake of com-
pleteness, we have decided to present our preliminary idea
in this paper. Our initial concept is largely aligned with the
Instance-Level Memory Attention approach, where the fea-
tures of the target frame are enhanced by aggregating fea-
tures from supporting frames in memory. Although we can-
not provide a detailed description of the internal structure of
this module, we can present an abstract representation of the
process.

Let Φ denote the feature extraction network, then the
pixel-level features of the key frame ft can be expressed as:

ft = Φ(FPN(It)), (2)
where FPN represents the feature pyramid network. Sim-

ilarly, the pixel-level features of the supporting frames can

be denoted as {fs}Ts=1. The aggregated pixel-level features
of the target frame, f∗

t , can then be expressed as:

f∗
t = PLMA(ft, {fs}Ts=1), (3)

where PLMA denotes Pixel-Level Memory Attention.
In future work, we plan to refine the internal design of the

Pixel-Level Memory Attention module and provide rigorous
experimental validation to demonstrate its effectiveness.

Training and Loss
Due to the memory attention module we introduced requir-
ing the learning of temporal information, we were inspired
by OV-Track(Li et al. 2023) and used image generation al-
gorithms to generate a support frame for each static image
on the LVIS dataset, so that each image can be viewed as a
video segment with only two frames.

For the training loss, we adapted the loss from ViLD.
First, Ltext initially adopts the CLIP(Radford et al. 2021)
approach to replace the original classification loss, assuming
f∗
t is the feature used for classification in the target frame,

and ti represents the text embedding of the i-th category ob-
tained through a pre-trained text encoder. Then, Ltext can be
expressed as:

z(t) =
[
sim(f∗

t , ebg), · · · , sim(f∗
t , t|CB |)

]
, (4)

Ltext =
1

N

∑
r∈P

LCE(softmax(z(r)/τ), yr), (5)

where sim(a,b) = aT b/(∥a∥ · ∥b∥), yr denotes the class la-
bel of region r, N is the number of proposals per image(|P |),
and LCE is the cross entropy loss.



Figure 3: The architecture of Instance-Level Memory Atten-
tion

For the knowledge distilling loss. Let V denotes Pre-
trained image encoder. Specifically, we align region embed-
ding R(ϕ(I), r̃) to image embedding V(crop(I, r̃)).And to
make training more efficient, we extract M proposals r̃ ∈ P̃
offline for each training image, and precomputed the M im-
age embeddings. These proposals can contain objects in both
CB and CN , as the network can generalize. Thus, LKD can
be expressed as:

LKD =
1

M

∑
r̃∈P̃

∥V(crop(I, r̃))−R(ϕ(I), r̃)∥1, (6)

The total training loss is simply a weighted sum of both
objectives:

L = Ltext + w · LKD + Lbox. (7)

where w is a hyperparameter weight of distilling the image
embedding.

Experiments
We first introduce the relevant datasets and evaluation met-
rics. Subsequently, we provide additional details about the
proposed method. Finally, we present our experimental re-
sults along with an analysis of those results.

Datasets and Metrics
We trained OV-VOD on the LVIS dataset. Since the intro-
duced memory attention module requires learning temporal
information from supporting frames, but the LVIS dataset
is an open-vocabulary image dataset where images are en-
tirely independent, we addressed this issue by adopting the
approach of OV-Track. Specifically, we used an image gen-
eration algorithm to generate one adjacent frame for each

image in the training set, converting each image in LVIS into
a short video clip consisting of two frames.

We then evaluated our model’s performance on the large-
scale open-vocabulary video instance segmentation dataset,
LV-VIS. It is worth noting that the original annotation for-
mat of LV-VIS only includes mask labels. However, due to
the similarity between instance segmentation and object de-
tection tasks, the mask annotations can be easily converted
into bounding box annotations.

In future work, we plan to further evaluate our model on
the BURST and TAO datasets. These datasets are primar-
ily used for evaluating open-vocabulary tracking methods,
but their annotations can also be converted into bbox for-
mat, making them suitable for assessing the performance of
Open-Vocabulary VOD methods.

Notably, all methods presented in the experiments were
not fine-tuned on the respective evaluation datasets. For a
fair comparison, all models were trained on the LVIS dataset
and subsequently evaluated in a zero-shot manner on the cor-
responding evaluation datasets.

LVIS is a widely used image open-vocabulary detection
dataset, which contains a large set of 1203 categories. Fol-
lowing ViLD setting, we take frequent and common cate-
gories as the base categories and set rare categories as novel
categories.

LV-VIS is a recently introduced large-scale dataset for
evaluating open-vocabulary video instance segmentation. It
contains 1,196 categories, of which 641 are base categories
following the LVIS split, and 555 are novel categories.
Among the novel categories, there are not only rare cate-
gories from LVIS but also entirely new classes not present
in LVIS. Therefore, LV-VIS is highly suitable for assessing
the performance of open-vocabulary video detection meth-
ods.

TAO is a dataset designed for evaluating open-vocabulary
multi-object tracking methods. Since the annotations for
multi-object tracking tasks are similar to those for detection
tasks, we believe that despite the potential for incomplete
object annotations, the dataset’s category diversity makes
it suitable for evaluating open-vocabulary video detection
methods. TAO contains a total of 363 categories, following
the LVIS setting, with 73 novel categories and 290 base cat-
egories.

BURST is a recently introduced video dataset extending
TAO. BURST contains 425 base categories and 57 novel cat-
egories following the partitions in LVIS.

Implementation Details
Baseline Models. We selected several existing two-stage
open-vocabulary object detection methods as our baseline
models, specifically ViLD and DetPro, due to their method-
ological similarities and incremental improvements. We first
chose to validate the effectiveness of our approach on ViLD.

OV-VOD. To ensure a fair comparison with the baselines,
we used the same backbone, ResNet-50, for our experi-
ments. The number of heads in the memory attention module
was set to 16, and the memory attention layer was stacked
for a total of 4 layers. Following the settings in ViLD, the
temperature coefficient τ was set to 0.1 during training and



0.007 during inference. The weight coefficient w for the loss
LKD was set to 0.5.

Training Details. We train OV-VOD on LVIS for 6
epochs with a batch size of 1, Each GPU processes a mini-
batch, with each mini-batch containing one target frame and
its supporting frames.We adopt SGD optimizer. Due to lim-
ited computational resources, we initialized the model with
ViLD’s pre-trained parameters on LVIS and froze these pa-
rameters during the training of the memory attention mod-
ule. The base learning rate was set to 0.1 and decayed to
one-tenth of its value at the 3rd and 5th epochs. The momen-
tum was set to 0.9, and the weight decay was set to 0.0001.
A warmup strategy was applied during the first 1,000 itera-
tions.To ensure fairness in the experiments, we adopted the
same data augmentation strategy as DetPro. Training was
conducted on 4 4090 GPUs for approximately 11 hours, and
all inference was performed on a single 4090 GPU.

Note that since the experiments are not yet fully com-
pleted, the above experimental parameter settings reflect the
best results obtained so far and may not represent the final
parameter configuration of the model.

Results on LV-VIS dataset
Due to time constraints, we have not yet achieved satisfac-
tory experimental results. However, we still present many
of the results obtained during our experiments, even though
they are far from ideal. We also provide a detailed analy-
sis of the reasons behind their suboptimal performance. Af-
ter analyzing the results of early experiments and making
corresponding improvements, performance has shown some
improvement. Nevertheless, the final model’s performance
remains unsatisfactory. In subsequent sections, we will an-
alyze the reasons for the model’s suboptimal performance
under the current best settings and propose directions for
improvement in future work.All relevant experimental pro-
cesses and the results of the baselines on the LV-VIS valida-
tion set are shown in Table 2.

We first conducted a series of experiments on ViLD,
where expi represents the experiment index. Due to the
long experimental period, the data for experiments exp2
and exp3 were not saved because their model performance
was very poor and similar to that of exp1. We also report
the performance results of DetPro. From an overall perfor-
mance comparison, DetPro demonstrates the best results so
far. However, we acknowledge that due to time constraints,
many SOTA methods have not yet been thoroughly tested,
and completing these experiments will be a focus of fu-
ture work.In the following sections, we will present the de-
tailed ablation results for each experiment and provide re-
lated analysis.

Ablation Study on LV-VIS dataset
Due to time constraints, we were unable to achieve sat-
isfactory model performance. Therefore, we present some
failed experimental results along with the best performance
achieved so far. The detailed ablation results for each exper-
iment are shown in Table 3.

Experiment (a) was our initial attempt at implementing
the memory attention module. In this experiment, we did

not freeze any model parameters; instead, we simply loaded
the pre-trained ViLD parameters and randomly initialized
the parameters of the memory attention module. A uniform
learning rate and weight decay strategy were applied to all
model parameters.As shown in Table 3, the performance
of Experiment (a) was very poor. The most critical met-
ric, APn, decreased by 4.9 compared to the baseline. Fur-
thermore, we observed that the model’s recall rate AR also
dropped significantly, with a reduction of 30.1 compared to
the baseline. This directly indicates that a large portion of the
model parameters deviated substantially. Specifically, while
we expected the model to learn the parameters of the mem-
ory attention module during fine-tuning, the overly large
learning rate caused the model to forget much of the pre-
viously acquired knowledge.We concluded that the primary
reason for the failure of Experiment (a) was the catastrophic
forgetting of previously learned knowledge during the fine-
tuning process.

Experiment (b) was conducted after identifying the rea-
sons for the failure of Experiment (a). Specifically, in Ex-
periment (b), we froze all parameters initialized with pre-
trained weights to ensure that the pre-trained knowledge
would not be forgotten during fine-tuning.As shown in Table
3, the performance of Experiment (b) improved significantly
compared to Experiment (a), with most metrics approach-
ing the baseline. However, the performance still fell short
of the baseline, with the critical APn metric remaining 0.9
lower than the baseline. Nonetheless, the substantial perfor-
mance improvement from Experiment (a) to Experiment (b)
highlights the issues in the fine-tuning training strategy used
in Experiment (a).In future work, we will explore assigning
different learning rates and weight decay values to different
parameters, which will be discussed in detail in the results
analysis and future outlook sections.

Although Experiment (b) achieved a significant perfor-
mance improvement over Experiment (a), it still fell short
of the baseline. We then carefully analyzed the entire ex-
perimental pipeline to identify the reasons for the model’s
performance degradation.

We found that due to the design of the Mask R-
CNN(Girshick et al. 2014) architecture, positive and neg-
ative sampling of image proposals was performed during
training to ensure model accuracy. This design was car-
ried over to the processing of proposals from the support-
ing frames, resulting in a fixed ratio of positive and negative
samples during training. However, during inference, all pro-
posals need to be classified and localized. We hypothesize
that this design hinders the memory attention module from
effectively learning its parameters because the distribution
of positive and negative samples in the proposals differs be-
tween the training and inference stages.

To address this, we removed positive and negative sam-
pling for supporting frame proposals during training. Addi-
tionally, to enable the cross-attention mechanism to better
learn the relationships between the key frame and multiple
supporting frames, we included the target frame as one of
the supporting frames during training.As shown in Table 3,
the results of Experiment (c) surpassed the baseline, but the
performance improvement remains limited, with the critical



Method Backbone
Detection Instance segmentation

APn APb AP APn APb AP

ViLD* ResNet50 8.7 11.7 10.0 8.3 11.4 9.6
Detpro ResNet50 9.7 12.0 10.6 9.2 11.5 10.2
exp1 ResNet50 3.8 5.3 4.7 3.6 5.1 4.6
· · · · · · · · · · · · · · · · · · · · · · · ·
exp4 ResNet50 7.8 10.2 8.8 7.3 9.8 8.4
exp5 ResNet50 8.8 11.9 10.1 8.4 11.5 9.7

Table 2: The zero-shot performance comparison on LV-VIS validation. The AP, APn, and APb mean the average precision of
overall categories, novel categories, and base categories.

(a) (b) (c) APn APb AP AP50 AR

8.7 11.7 10.0 15.4 41.5
✓ 3.8(-4.9) 5.3(-6.4) 4.7(-5.3) 6.5(-8.9) 11.4(-30.1)

✓ 7.8(-0.9) 10.2(-1.5) 8.8(-1.2) 11.2(-4.2) 36.6(-4.9)
✓ 8.8(+0.1) 11.9(+0.2) 10.1(+0.1) 15.5(+0.1) 42.0(+0.5)

Table 3: Ablation Study Results of Several Experiments on
the LV-VIS Validation.

APn metric exceeding the baseline by only 0.1. Neverthe-
less, we believe that our model still has room for further op-
timization and improvement.

Result Analysis and outlook
In this section, we will provide a detailed analysis of the
suboptimal results obtained so far and outline directions for
future work.

Why was the training strategy set to fine-tuning in-
stead of following the baseline’s training strategy? Con-
sidering the limitation of computational resources, we opted
for a fine-tuning strategy. Even with the more efficient train-
ing approach introduced by DetPro, ViLD still requires 20
epochs of training on the LVIS dataset. However, this could
also be one of the reasons contributing to the suboptimal
performance of our model. In our training strategy, all pre-
trained model weights were frozen, and only the newly in-
troduced modules were trained during the fine-tuning stage.
This resulted in the model’s parameters not being trained
jointly, which may have caused the model to fall into a lo-
cal optimum.In future work, we plan to further improve the
training strategy. For example, we could follow the base-
line’s approach and retrain all model parameters, or adopt a
strategy where smaller learning rates and larger weight de-
cays are applied to the pre-trained parameters, while larger
learning rates and smaller weight decays are applied to the
new module parameters. This would allow all model param-
eters to be trained during the fine-tuning stage.

Why does the memory attention not work?In fact,
the memory attention module did not perform as effec-
tively as we expected. Our idea of aggregating proposal-
level features from supporting frames was inspired by tra-
ditional video object detection research, where extensive ex-
periments have shown that aggregating proposal-level fea-
tures from supporting frames often significantly improves

Figure 4: (a) A sample of sampled frames from a video in
the LV-VIS dataset, where the objects within the frames are
generally visually clear. (b) A sample of sampled frames
from a video in the ImageNet VID dataset, where objects in
the frames suffer from severe occlusion and motion-induced
blur. These differences in data distribution between the two
datasets may be the primary reason why the memory atten-
tion module does not work effectively.

model performance on the ImageNet VID dataset. However,
this approach did not yield satisfactory results on the LV-
VIS dataset.Upon closely examining the data distributions
of the two datasets, a significant difference becomes appar-
ent: many videos in ImageNet VID contain a large number
of consecutive frames, while videos in LV-VIS have fewer
frames, obtained through a specific frame-sampling ratio.
As a result, most objects in LV-VIS are visually clear, as
shown in Fig.4. Issues commonly seen in real-world videos,
such as motion blur, occlusion, or abnormal poses caused by
object movement, are rarely present. Aggregating proposal
features from supporting frames is typically effective in ad-
dressing such issues, which are known to reduce the perfor-
mance of single-frame detectors.This observation has led us
to reconsider the primary challenges in the LV-VIS dataset.
It appears that the challenges posed by the video dimen-
sion may not be the most significant; instead, the primary
factor affecting model performance likely lies in the open-
vocabulary aspect. In future work, we plan to not only en-



hance the model’s performance from the video perspective
but also explore ways to further improve its performance in
open-vocabulary settings.Additionally, we will evaluate the
memory attention module on the BURST and TAO datasets
to verify whether the suboptimal performance is due to the
specific video data distribution in LV-VIS.

Conclusion
In this paper, we propose a novel task, Open-Vocabulary
VOD, which aims to detect and classify arbitrary objects
in video frames. To better address the challenges of open-
vocabulary detection in the video domain, we provide a
training strategy that extends the LVIS dataset into a video
dataset using image generation methods. Additionally, we
introduce open-vocabulary video datasets from related do-
mains for evaluating Open-Vocabulary VOD methods, offer-
ing valuable references for future research.Finally, we aim to
design a high-performance Open-Vocabulary VOD bench-
mark method that mitigates the limitations of static detectors
in the video domain by aggregating features from support-
ing frames. Although our experiments have not yet achieved
satisfactory results, we remain optimistic that future work
will yield promising advancements.
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